domingo, 31 de enero de 2010

Conversiones y teoremas

Grado sexagesimal

De Wikipedia, la enciclopedia libre

Un grado sexagesimal es el ángulo central subtendido por un arco cuya longitud es igual a 1/360 de la circunferencia. Es la nonagésima (1/90) parte de un ángulo recto.

Amplitud de un grado sexagesimal.

1 Definición
1.1 Notación decimal
1.2 Notación sexagesimal
2 Relación entre radianes y grados sexagesimales
3 Véase también
4 Enlaces externos

http://es.wikipedia.org/wiki/Grado_sexagesimal

Teorema de Pitágoras
El Teorema de Pitágoras establece que en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se establece que:

Contenido
1 Historia
2 Demostraciones
2.1 China: el Chou Pei Suan Ching, y el Chui Chang Suang Shu
2.2 Demostraciones supuestas de Pitágoras
2.3 Demostración de Platón: el Menón
2.4 Demostración de Euclides: proposición I.47 de Los Elementos
2.5 Demostración de Pappus
3 Notas
4 Referencias bibliográficas
5 Véase también
6 Enlaces externos

El triángulo

Triángulo

El triángulo es un polígono de tres lados
Un triángulo, en geometría, es un polígono de tres lados determinado por tres segmentos de tres rectas que se cortan, denominados lados (Euclides); o tres puntos no alineados llamados vértices. También puede determinarse un triángulo por cualesquiera otros tres elementos relativos a él, como por ejemplo un ángulo y dos medianas; o un lado, una altura y una mediana.
Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.

http://es.wikipedia.org/wiki/Tri%C3%A1ngulo

Clasificación de los ángulos

Para otros usos de este término, véase Ángulo (desambiguación).

Los ángulos son la parte del plano comprendida entre dos semirrectas que tienen el mismo origen.[1] Suelen medirse en unidades tales como el radián, el grado sexagesimal o el grado centesimal.
Pueden estar definidos sobre superficies planas (trigonometría plana) o curvas (trigonometría esférica). Se denomina ángulo diedro al espacio comprendido entre dos semiplanos cuyo origen común es una recta. Un ángulo sólido es el que abarca un objeto visto desde un punto dado, midiendo su tamaño aparente.
Contenido:

http://es.wikipedia.org/wiki/%C3%81ngulo

Conceptos basicos de la geometria

La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí.

Cualquier objeto puede sintetizarse mediante sus elementos geométricos mas simples: puntos, líneas, superficies, ángulos, etc. Es por lo tanto necesario que el estudiante de Geometría Descriptiva domine y exprese estos conceptos en forma correcta, razón por la cual se inicia la presente obra con este tema, en el cual se describen en forma simple los conceptos geométricos básicos de mayor uso en el estudio de la Geometría Descriptiva.

Además, pensando en la ejercitación práctica del estudiante en la resolución de problemas de Geometría Descriptiva, se incluyen en este punto las nociones básicas de trazado y manejo de escuadras y compás, finalizando con una breve descripción del concepto de escala.
Se supone que todo el contenido antes descrito es del conocimiento previo del estudiante de Geometría Descriptiva, razón por la cual se presenta este capítulo en forma concisa y con carácter principalmente informativo.
A continuación veremos algunos conceptos relacionados con la geometría.

Haz clic a continuación:
http://www.geometriadescriptiva.com/teoria/aperez/cap_01a-conceptos_geometricos/01-punto.htm


EL MÉTODO DEDUCTIVO
Antes de iniciar unas breves pinceladas obre este método, es interesante resaltar una distinción importante entre deductivismo y deducción, lo mismo que podría establecerse entre inductivismo e inducción. La deducción, tanto si es axiomática como matemática, puede emplearse de manera que facilite el análisis estadísitco y el contraste. Sin embargo, el deductivismo implica que la estadística y el conocimiento empírico es tan transitorio que no vale la pena y que un primer análisis deductivo puede proporcionar una mejor comprensión de un determinado fenómeno (Pheby, 1988, pág. 14).
Las primeras consideraciones del método deductivo podrían remontarse a los trabajos de Descartes a comienzos del siglo XVII, en su afán de encontrar un método que proporcionara un mejor conocimiento de las diferentes esferas de actividad. Por consiguiente, los objetivos de Bacon y Descartes eran similares, sin embargo, la forma de conseguirlos era diametralmente opuesta. Descartes utilizaba la deducción y las matemáticas como punto referencial, mientras que Bacon le prestaba muy poca atención a estos instrumentos.
Centrándonos en el deductivismo, se trata de un procedimiento que consiste en desarrollar una teoría empezando por formular sus puntos de partida o hipótesis básicas y deduciendo luego sus consecuencia con la ayuda de las subyacentes teorías formales. Sus partidarios señalan que toda explicación verdaderamente científica tendrá la misma estructura lógica, estará basada en una ley universal, junto a ésta, aparecen una serie de condicionantes iniciales o premisas, de las cuales se deducen las afirmaciones sobre el fenómeno que se quiere explicar.
El argumento deductivo se contrapone al método inductivo, en el sentido de que se sigue un procedimiento de razonamiento inverso. En el método deductivo, se suele decir que se pasa de lo general a lo particular, de forma que partiendo de unos enunciados de carácter universal y utilizando instrumentos científicos, se infieren enunciados particulares, pudiendo ser axiomático-deductivo, cuando las premisas de partida están constituidas por axiomas, es decir, proposiciones no demostrables, o hipotéticos-deductivo, si las premisas de partida son hipótesis contrastables.
Las leyes universales vendrán dadas por proposiciones del tipo “en todos los casos en los que se da el fenómeno A, se da también el fenómeno B. Estas leyes tendrán un carácter determinista cuando se refieran a fenómenos >”B” individuales y carácter estocástico cuando hagan mención a clases de fenómenos “B” que se den con una cierta probabilidad.
La actuación seguida por el investigador sería la siguiente:
1. Planteamiento del conjunto axiomático de partida. El criterio que debe seguirse en esta etapa debe ser el de la sencillez. Los supuestos deben incorporar sólo las características más importantes de los fenómenos, debiendo ser eliminadas las irrelevantes. Debe existir coherencia entre los postulados, sin que haya contradicción entre unos y otros.
2. Proceso de deducción lógica, partiendo siempre de los postulados iniciales, es decir, de la etapa anterior.
3. Enunciado de leyes de carácter general, a los que se llegará partiendo del conjunto axiomático y a través del proceso de deducción.
Del procedimiento lógico se infiere que las explicaciones y predicciones siguen las mismas reglas de deducción, la única diferencia está en que la explicación se produce una vez que ha ocurrido el suceso, mientras que la predicción tienen un carácter apriorístico.
Para citar una causa determinada como explicación de un fenómeno concreto, hemos de someterlo a una ley universal. En el caso de la predicción, partimos de una ley universal y de un conjunto de premisas deduciendo de ellos proposiciones acerca del fenómeno desconocido.
La idea de la existencia de un paralelismo entre la naturaleza de las explicaciones y de las predicciones ha sido denominada “tesis de la simetría”. Este concepto ha suscitado numerosas críticas. Se argumenta que la predicción no tiene por qué implicar explicación, e incluso que la explicación no tiene por qué implicar predicción alguna. Esta conclusión nos parece razonable, en cuanto que para predecir el valor futuro de una variable basándonos en sus valores históricos no es necesario explicar la naturaleza de la misma, basta con aplicar los métodos estadísticos apropiados. Igualmente, para explicar la naturaleza de la variable no es necesario extrapolar valores futuros. A estos efectos comenta Blaug (1985, pág. 22): “Mientras para la predicción es suficiente con que exista correlación entre dos variables, par la explicación es necesario saber acerca de la naturaleza de las variables y de algo que determine cuál es la variable causa y cuál la variable efecto”.
Por último, finalizaremos la descripción del método deductivo afirmando que, dada la dificultad para contrastar empíricamente las hipótesis básicas, se da cada vez un mayor grado de abstracción de las teorías construidas a partir de este procedimiento, lo que conlleva la construcción de modelos como representación simplificada de la realidad, con el consiguiente riesgo de separación entre modelo y realidad. Sin embargo, es preciso señalar, como apunta Pheby (1988, pág. 14), que existe una clara separación entre deductivismo y los procedimientos de deducción que habitualmente se emplean en economía. La deducción, sea axiomática o matemática, puede ser empleada para facilitar los análisis estadísticos y test de hipótesis, en cambio el deductivismo postula que el conocimiento estadístico y empírico es transitorio, un primer análisis deductivo puede proporcionar mejor comprensión de los fenómenos.
EL MÉTODO INDUCTIVO

Esta metodología se asocia originariamente a los trabajos de Francis Bacon a comienzos del siglo XVII. En términos muy generales, consiste en establecer enunciados universales ciertos a partir de la experiencia, esto es, ascender lógicamente a través del conocimiento científico, desde la observación de los fenómenos o hechos de la realidad a la ley universal que los contiene. Resumiendo las palabras de Mill (1973, las investigaciones científicas comenzarían con la observación de los hechos, de forma libre y carente de prejuicios. Con posterioridad -y mediante inferencia- se formulan leyes universales sobre los hechos y por inducción se obtendrían afirmaciones aún más generales que reciben el nombre de teorías.
Según este método, se admite que cada conjunto de hechos de la misma naturaleza está regido por una Ley Universal. El objetivo científico es enunciar esa Ley Universal partiendo de la observación de los hechos.
Atendiendo a su contenido, los que postulan este método de investigación distinguen varios tipos de enunciados:
• Particulares, si se refieren a un hecho concreto.
• Universales, los derivados del proceso de investigación y probados empíricamente.
• Observacionales, se refieren a un hecho evidente.
Haciendo hincapié en el carácter empirísta de esta metodología, la secuencia seguida en este proceso de investigación puede resumirse en los siguientes puntos (Wolfe, 1924, pág. 450):
1. Debe llevarse a cabo una etapa de observación y registro de los hechos.
2. A continuación se procederá al análisis de lo observado, estableciéndose como consecuencia definiciones claras de cada uno de los conceptos analizados.
3. Con posterioridad, se realizará la clasificación de los elementos anteriores.
4. La última etapa de este método está dedicada a la formulación de proposiciones científicas o enunciados universales, inferidos del proceso de investigación que se ha llevado a cabo.
Según estos empiristas clásicos, se han de considerar teorías científicas las formadas por conjuntos de enunciados probados empíricamente y que, o bien describen hechos firmes, o bien son generalizaciones inductivas de aquellos. La teoría no es aceptada hasta que no haya sido probada. De este modo, vemos en estos empiristas un rechazo frontal hacia toda especulación teórica sobre campos del conocimiento en los que no se pueda realizar una contrastación empírica.
Este enfoque inductivo de ciencia empezó a derrumbarse gradualmente en la segunda mitad del siglo XIX bajo la influencia de los escritos de Match, Poincare y Duhem, a principios de nuestro siglo empezó a tomar una visión prácticamente opuesta en los trabajos del Círculo de Viena. Algunos autores contemporáneos han criticado duramente esta metodología (Hempel, 1966, pp. 11-12; Medawar, 1969, pág.40) argumentando una serie de cuestiones que ponen en duda su eficacia, como la imposibilidad de recopilar todos los hechos relacionados con el fenómeno en el que estamos interesados o el hecho de que la experimentación sea sólo utilizada como un simple procedimiento para generar información.
Por otro lado, el denominado “problema de la inducción” es un tema que presenta determinadas implicaciones incluso para aquellos que no suscriben la metodología inductivista. La cuestión se plantea ante la duda de si la evidencia inductiva puede ser utilizada para predecir futuros acontecimiento, en consecuencia, el problema de la inducción surge a partir de nuestra incapacidad para proporcionar elementos racionales que puedan ser utilizadas para explicar algo más allá de la evidencia disponible (Pheby, 1988, pág. 7).

sábado, 23 de enero de 2010

Antecedentes de la geometría


La geometría (del griego geo, tierra y metrein, medir), es la rama de las matemáticas que se ocupa de las propiedades del espacio. El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban por problemas como la medida del tamaño de las tierras o del trazado de edificaciones. Para llegar a la geometría fractal hay que hacer un recorrido de miles de años pasando por el Antiguo Egipto, Sumeria y Babilonia, Grecia, Europa y los Estados Unidos de Norteamérica.


Euclides
Para comenzar, podríamos establecer una primera clasificación determinando dos tipos principales de geometría: euclidiana y no-euclidiana. En el primer grupo se encuentran la geometría plana, la geometría sólida, la trigonometría, la geometría descriptiva, la geometría de proyección, la geometría analítica y la geometría diferencial; en el segundo, la geometría hiperbólica, la geometría elíptica y la geometría fractal.


Planos diédricos de proyección y esfera cuyo eje es la línea de tierra.
Psudoesfera.


La geometría euclidiana se basa en las definiciones y axiomas descritos por Euclides (c.325 - c.265 a.C.) en su tratado Elementos, que es un compendio de todo el conocimiento sobre geometría de su tiempo. Principalmente comprende puntos, líneas, círculos, polígonos, poliedros y secciones cónicas, que en secundaria se estudian en Matemáticas y en Educación Plástica y Visual. Inspirados por la armonía de la presentación de Euclides, en el siglo II se formuló la teoría ptolemaica del universo.


Dentro de las geometrías euclidianas se encuadran:

La geometría sólida que fue desarrollada por Arquímedes (287 - 212 a.C.) y que comprende, principalmente, esferas, cilindros y conos. Las secciones cónicas fueron el tema de los estudios de Apolonio en la misma época (c.260 - 200 a.C.).


La trigonometría que es la geometría de los triángulos. Fue desarrollada por Hiparco de Nicea (c. 190 - 120 a.C.). Puede dividirse en trigonometría plana, para triángulos en un plano, y trigonometría esférica, para triángulos en la superficie una esfera.


La geometría proyectiva que tiene su origen en los pintores del Renacimiento, aunque la base matemática inicial la elaboro el arquitecto Filippo Brunelleschi (1377–1446). Piero della Francesca, Leone Battista Alberti y Alberto Durero reflexionaron sobre las nociones de proyección y sección en su afán de entender el problema de la representación plana de un objeto real tridimensional, pero fue el arquitecto e ingeniero militar Gérard Desargues (1591–1661), el primer matemático que expuso estas ideas al publicar en Paris en el año 1639 Paris el libro: “Brouillon project d’une atteinte aux ëvénements des rencontres d’un cone avec un plan” (“Primer borrador sobre los resultados de intersecar un cono con un plano”). Los métodos proyectivos permiten a Desargues un tratamiento general y unificado de las cónicas, en contraposición con los métodos clásicos de Apolonio.


La geometría analítica que fue inventada por René Descartes (1596 - 1650), trabaja problemas geométricos a base de un sistema de coordenadas y su transformación a problemas algebraicos. Se subdivide en geometría analítica plana, para ecuaciones con dos variables, y geometría analítica sólida, para ecuaciones con tres variables.


La geometría diferencial que tiene su origen siglo XVIII, cuando los matemáticos siguiendo los descubrimientos de Descartes, añadieron cálculo diferencial e integral a curvas, superficies y otras entidades geométricas.


El análisis vectorial que estudia las cantidades que poseen magnitud y dirección. Conocida desde los tiempos de Aristóteles, y más aún por Simon Stevin en las últimas décadas del siglo XVI, la teoría moderna data de principios del siglo XIX.


Las geometrías no euclidianas dentro de las que se encuadra la geometría fractal surgen en el siglo XIX, cuando algunos matemáticos comenzaron a desarrollar otros tipos de geometría, para los cuales, al menos uno de los axiomas de Euclides no se sostiene. Sin embargo el origen de la geometría fractal y de los fractales, habría que establecerlo hacia 1875–1925, cuando se produce una crisis en la definición de dimensión. Algunos de los “hitos” en la historia de las matemáticas no lineales y de la geometría fractal se presentan en este cuadro resumen.
A continuación haz clic a continuación para conocer mas sobre Euclides el padre de la geometría: